Unsupervised and Supervised Learning over the Energy Landscape for Protein Decoy Selection

Author:

Akhter ,Chennupati ORCID,Kabir ORCID,Djidjev ORCID,Shehu ORCID

Abstract

The energy landscape that organizes microstates of a molecular system and governs theunderlying molecular dynamics exposes the relationship between molecular form/structure, changesto form, and biological activity or function in the cell. However, several challenges stand in the wayof leveraging energy landscapes for relating structure and structural dynamics to function. Energylandscapes are high-dimensional, multi-modal, and often overly-rugged. Deep wells or basins inthem do not always correspond to stable structural states but are instead the result of inherentinaccuracies in semi-empirical molecular energy functions. Due to these challenges, energeticsis typically ignored in computational approaches addressing long-standing central questions incomputational biology, such as protein decoy selection. In the latter, the goal is to determine over apossibly large number of computationally-generated three-dimensional structures of a protein thosestructures that are biologically-active/native. In recent work, we have recast our attention on theprotein energy landscape and its role in helping us to advance decoy selection. Here, we summarizesome of our successes so far in this direction via unsupervised learning. More importantly, we furtheradvance the argument that the energy landscape holds valuable information to aid and advance thestate of protein decoy selection via novel machine learning methodologies that leverage supervisedlearning. Our focus in this article is on decoy selection for the purpose of a rigorous, quantitativeevaluation of how leveraging protein energy landscapes advances an important problem in proteinmodeling. However, the ideas and concepts presented here are generally useful to make discoveriesin studies aiming to relate molecular structure and structural dynamics to function.

Funder

National Science Foundation

Thomas F. and Kate Miller Jeffress Memorial Trust

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3