Chitosan Film as Eco-Friendly and Recyclable Bio-Adsorbent to Remove/Recover Diclofenac, Ketoprofen, and Their Mixture from Wastewater

Author:

Rizzi VitoORCID,Romanazzi Fabio,Gubitosa Jennifer,Fini PaolaORCID,Romita Roberto,Agostiano AngelaORCID,Petrella Andrea,Cosma PinalysaORCID

Abstract

This paper reported the first example on the use of chitosan films, without further modification, to remove and recover, through bio-sorption processes, the emerging pollutant Diclofenac from water. The latter was adopted as a model, among non-steroidal anti-inflammatory drugs, by obtaining a maximum adsorption capacity, qmax, on chitosan of about 10 mg/g, under the applied experimental conditions of work. The literature gap about the use of chitosan films, which was already used for dyes and heavy metals removal, to adsorb emerging pollutants from water was covered, claiming the wide range application of chitosan films to remove a different class of pollutants. Several parameters affecting the Diclofenac adsorption process, such as the pH and ionic strength of solutions containing Diclofenac, the amount of the bio-sorbent and pollutant, and the temperature values, were investigated. The kinetics and the adsorption isotherms, along with the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were also evaluated. The process occurred very efficiently, and Chitosan/Diclofenac amounts dependent, remove about the 90% of the pollutant, in 2 h, from the tested solutions, through electrostatic interaction involving the carboxylic moiety of Diclofenac and Chitosan amino groups. This finding was confirmed by the pH and salt effects on the bio-sorption process, including swelling measurements of Chitosan films and by FTIR-ATR analysis. In detail, the maximum adsorption was observed at pH 5, when pollutant and Chitosan were negatively and positively charged, respectively. By reducing or increasing the pH around this value, a reduced affinity was observed. Accordingly, the presence of salts retarded the Diclofenac removal screening its charges, which hinders the interaction with Chitosan. The sorption was spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) following the pseudo-second order kinetic model. The process was Diclofenac and Chitosan amount dependent. In addition, the Freundlich and Temkin isotherms well described the process, which showed the heterogeneous character of the process. Experiments of the complete desorption were also performed by using NaCl solutions 0.25 M (like sea water salt concentration) proposing the reuse of the pollutant and the recycling of the bio-sorbent lowering the associated costs. The versatility of the adsorbent was reported by exploring the possibility to induce the Diclofenac light-induced degradation after the adsorption and by-products adsorption onto chitosan films. To emphasize the chitosan capacity of treating water, the removal of another pollutant such as Ketoprofen and the mixture of Diclofenac and Ketoprofen were investigated. In this way, a green and eco-friendly production-pollution prevention technology for removing emerging pollutants from water was presented, which reduced the overall environmental impact. This illustrated experiments both in static and dynamic conditions for potential industrial applications.

Funder

LIFE+ European Project

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3