A Study on Elevated Concentrations of Submicrometer Particles in an Urban Atmosphere

Author:

Cho Hee-Joo,Kang Jia,Kim Dohyeong,Seo Arom,Park MinhanORCID,Joo Hungsoo,Park Kihong

Abstract

Mass concentrations of chemical constituents (organics, nitrate, sulfate, ammonium, chloride, and black carbon (BC)) and the number size distribution of submicrometer particles in the ambient atmosphere were continuously measured in urban Gwangju, Korea, during the Megacity Air Pollution Studies (MAPS)-Seoul campaign. Organics (9.1 μg/m3) were the most dominant species, followed by sulfate (4.7 μg/m3), nitrate (3.2 μg/m3), ammonium (2.6 μg/m3), and BC (1.3 μg/m3) in submicrometer particles (particulate matter less than 1 μm (PM1)). The potential source regions of the sulfate were located in the South and East regions of China and South and East regions of Korea, while local sources were responsible for the elevated BC concentration. Diurnal variation showed that concentrations of organics, nitrate, ammonium, chloride, and BC decreased with increasing mixing layer and wind speed (dilution effect), while sulfate and oxidized organics increased possibly due to their strong photochemical production in the afternoon. During the campaign, an elevated mass concentration of PM1 (PM1 event) and number concentration (nanoparticle formation (NPF) event) were observed (one PM1 event and nine NPF events out of 28 days). The PM1 event occurred with Western and Southwestern air masses with increasing sulfate and organics. Long-range transported aerosols and stagnant meteorological conditions favored the elevated mass concentration of submicrometer particles. Most of the NPF events took place between 10:00 and 14:00, and the particle growth rates after the initial nanoparticle formation were 7.2–11.0 nm/h. The times for increased concentration of nanoparticles and their growth were consistent with those for elevated sulfate and oxidized organics in submicrometer particles under strong photochemical activity.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3