Incorporation of Numerical Plume Rise Algorithms in the Lagrangian Particle Model LAPMOD and Validation against the Indianapolis and Kincaid Datasets

Author:

Bellasio RobertoORCID,Bianconi Roberto,Mosca Sonia,Zannetti Paolo

Abstract

This paper describes the methodology used to incorporate two numerical plume rise algorithms, one by Janicke and Janicke and another by Webster and Thomson, into the Lagrangian particle model LAPMOD. LAPMOD is fully interfaced with the diagnostic meteorological model CALMET, which is part of the widely used CALPUFF modeling system. LAPMOD can also use the meteorological input files produced with the AERMET meteorological processor of the US-EPA recommended model AERMOD. This paper outlines the theory behind the two plume rise algorithms and the details of their implementation in LAPMOD. The paper also provides the results of the evaluation of LAPMOD and its included plume rise algorithms against the well-known Indianapolis and Kincaid SF6 and SO2 field studies and tracer experiments. The performance of LAPMOD is successfully evaluated with the Model Evaluation Kit and compared with that of other air quality models.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference27 articles.

1. A user’s guide for the CALPUFF dispersion model (Version 5.0)http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf

2. History of Lagrangian Stochastic Models for Turbulent Dispersion;Thomson,2012

3. Formulation of the Lagrangian particle model LAPMOD and its evaluation against Kincaid SF6 and SO2 datasets

4. A user’s guide for the CALMET meteorological model (Version 5.0)http://www.src.com/calpuff/download/CALMET_UsersGuide.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3