Transparent Gelation of Ionic Liquids Trapped in Silicone Microcup Structures under Scanning Electron Microscopy

Author:

Iwasaki Kaede1,Okoshi Masayuki1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan

Abstract

It is expected that ionic liquids will be used in the future as electrolytes for electric double layer capacitors, but currently microencapsulation with a conductive or porous shell is required for their fabrication. Here, we succeeded in fabricating a transparently gelled ionic liquid trapped in hemispherical silicone microcup structures just by observing with a scanning electron microscope (SEM), which allows the microencapsulation process to be eliminated and electrical contacts to be formed directly. To see the gelation, small amounts of ionic liquid were exposed to the SEM electron beam on flat aluminum, silicon, silica glass, and silicone rubber. The ionic liquid gelled on all the plates, and a color change to brown was observed on all the plates except for silicone rubber. This change might be caused by reflected and/or secondary electrons from the plates producing isolated carbon. Silicone rubber could remove the isolated carbon due to the large amount of oxygen inside it. Fourier transform infrared spectroscopy revealed that the gelled ionic liquid included a large amount of the original ionic liquid. Moreover, the transparent, flat gelled ionic liquid could also be made into three-layer structures on silicone rubber. Consequently, the present transparent gelation is suitable for silicone rubber-based microdevices.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3