Affiliation:
1. Institut Charles Sadron (UPR 22), Université de Strasbourg, CNRS, 67034 Strasbourg, France
2. Centre de Recherche en Biomédecine de Strasbourg, Institut National de la Santé et de la Recherche Médicale, 67085 Strasbourg, France
3. Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000 Strasbourg, France
Abstract
The surface properties of a biomaterial play an important role in cell behavior, e.g., recolonization, proliferation, and migration. Collagen is known to favor wound healing. In this study, collagen (COL)-based layer-by-layer (LbL) films were built using different macromolecules as a partner, i.e., tannic acid (TA), a natural polyphenol known to establish hydrogen bonds with protein, heparin (HEP), an anionic polysaccharide, and poly(sodium 4-styrene sulfonate) (PSS), an anionic synthetic polyelectrolyte. To cover the whole surface of the substrate with a minimal number of deposition steps, several parameters of the film buildup were optimized, such as the pH value of the solutions, the dipping time, and the salt (sodium chloride) concentration. The morphology of the films was characterized by atomic force microscopy. Built at an acidic pH, the stability of COL-based LbL films was studied when in contact with a physiological medium as well as the TA release from COL/TA films. In contrast to COL/PSS and COL/HEP LbL films, COL/TA films showed a good proliferation of human fibroblasts. These results validate the choice of TA and COL as components of LbL films for biomedical coatings.
Funder
Higher Education Commission (HEC) Pakistan
Agence Nationale de la recherche InsBIOration M-ERA NET project
Fonds Régional de Coopération pour la Recherche of Région Grand Est ERMES project
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献