Synthesis of Cationic Quaternized Nanolevan Derivative for Small Molecule and Nucleic Acid Delivery

Author:

Charoenwongphaibun Chonnipha1,Lorthongpanich Chanchao2,Septham Prapasri2,Wangpaiboon Karan34ORCID,Panpetch Pawinee34,Pichyangkura Rath3,Charoenwongpaiboon Thanapon5,Kuttiyawong Kamontip1ORCID

Affiliation:

1. Division of Chemistry, Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Sean, Nakhon Pathom 73140, Thailand

2. Siriraj Center of Excellence for Stem Cell Research, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

3. Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

4. Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand

5. Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

Abstract

Levan is a biopolymer composed of fructose chains covalently linked by β−2,6 glycosidic linkages. This polymer self−assembles into a nanoparticle of uniform size, making it useful for a wide range of applications. Also, levan exhibits various biological activities such as antioxidants, anti-inflammatory, and anti-tumor, that make this polymer very attractive for biomedical application. In this study, levan synthesized from Erwinia tasmaniensis was chemically modified by glycidyl trimethylammonium chloride (GTMAC) to produce cationized nanolevan (QA-levan). The structure of the obtained GTMAC−modified levan was determined by FT-IR, 1H-NMR and elemental (CHN) analyzer. The size of the nanoparticle was calculated using the dynamic light scattering method (DLS). The formation of DNA/QA-levan polyplex was then investigated by gel electrophoresis. The modified levan was able to increase the solubility of quercetin and curcumin by 11-folds and 205-folds, respectively, compared to free compounds. Cytotoxicity of levan and QA−levan was also investigated in HEK293 cells. This finding suggests that GTMAC−modified levan should have a potential application for drug and nucleic acid delivery.

Funder

Kasetsart University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3