AdjustSense: Adaptive 3D Sensing System with Adjustable Spatio-Temporal Resolution and Measurement Range Using High-Speed Omnidirectional Camera and Direct Drive Motor

Author:

Ikura MikihiroORCID,Pathak Sarthak,Louhi Kasahara Jun YounesORCID,Yamashita AtsushiORCID,Asama Hajime

Abstract

Many types of 3D sensing devices are commercially available and were utilized in various technical fields. In most conventional systems with a 3D sensing device, the spatio-temporal resolution and the measurement range are constant during operation. Consequently, it is necessary to select an appropriate sensing system according to the measurement task. Moreover, such conventional systems have difficulties dealing with several measurement targets simultaneously due to the aforementioned constants. This issue can hardly be solved by integrating several individual sensing systems into one. Here, we propose a single 3D sensing system that adaptively adjusts the spatio-temporal resolution and the measurement range to switch between multiple measurement tasks. We named the proposed adaptive 3D sensing system “AdjustSense.” In AdjustSense, as a means for the adaptive adjustment of the spatio-temporal resolution and measurement range, we aimed to achieve low-latency visual feedback for the adjustment by integrating not only a high-speed camera, which is a high-speed sensor, but also a direct drive motor, which is a high-speed actuator. This low-latency visual feedback can enable a large range of 3D sensing tasks simultaneously. We demonstrated the behavior of AdjustSense when the positions of the measured targets in the surroundings were changed. Furthermore, we quantitatively evaluated the spatio-temporal resolution and measurement range from the 3D points obtained. Through two experiments, we showed that AdjustSense could realize multiple measurement tasks: 360∘ 3D sensing, 3D sensing at a high spatial resolution around multiple targets, and local 3D sensing at a high spatio-temporal resolution around a single object.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3