Up-Sampling Method for Low-Resolution LiDAR Point Cloud to Enhance 3D Object Detection in an Autonomous Driving Environment

Author:

You JihwanORCID,Kim Young-KeunORCID

Abstract

Automobile datasets for 3D object detection are typically obtained using expensive high-resolution rotating LiDAR with 64 or more channels (Chs). However, the research budget may be limited such that only a low-resolution LiDAR of 32-Ch or lower can be used. The lower the resolution of the point cloud, the lower the detection accuracy. This study proposes a simple and effective method to up-sample low-resolution point cloud input that enhances the 3D object detection output by reconstructing objects in the sparse point cloud data to produce more dense data. First, the 3D point cloud dataset is converted into a 2D range image with four channels: x, y, z, and intensity. The interpolation on the empty space is calculated based on both the pixel distance and range values of six neighbor points to conserve the shapes of the original object during the reconstruction process. This method solves the over-smoothing problem faced by the conventional interpolation methods, and improves the operational speed and object detection performance when compared to the recent deep-learning-based super-resolution methods. Furthermore, the effectiveness of the up-sampling method on the 3D detection was validated by applying it to baseline 32-Ch point cloud data, which were then selected as the input to a point-pillar detection model. The 3D object detection result on the KITTI dataset demonstrates that the proposed method could increase the mAP (mean average precision) of pedestrians, cyclists, and cars by 9.2%p, 6.3%p, and 5.9%p, respectively, when compared to the baseline of the low-resolution 32-Ch LiDAR input. In future works, various dataset environments apart from autonomous driving will be analyzed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3