Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing

Author:

Ramos Silva AntónioORCID,Vaz MárioORCID,Leite SofiaORCID,Mendes JoaquimORCID

Abstract

Lock-in thermal tests (LTTs) are one of the best ways to detect defects in composite materials. The parameter that most affects their performance is the cycle period of the stimulation wave. Its influence on the amplitude-phase results was determined by performing various numeric simulations and laboratory tests. The laboratory tests were used to infer part of the simulation parameters, namely the input and output heat, corresponding to the stimulation and natural convection. The simulations and the analysis of their results focus on the heat flow inside the sample and the manner they change for different geometries. This was performed for poly(methyl methacrylate (PMMA) and carbon fiber-reinforced polymers (CFRPs). The simulation of these materials was also used to create prediction surfaces and equations. These predict the amplitude and phase for a sample with a thickness l and a cycle period. These new findings were validated with new laboratory tests and two new samples. These validated the prediction surfaces and equations and can now be used as a reference for future works and industrial applications.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3