Abstract
In this work, we investigate the ill-conditioned problem of a separable, nonlinear least squares model by using the variable projection method. Based on the truncated singular value decomposition method and the Tikhonov regularization method, we propose an improved Tikhonov regularization method, which neither discards small singular values, nor treats all singular value corrections. By fitting the Mackey–Glass time series in an exponential model, we compare the three regularization methods, and the numerically simulated results indicate that the improved regularization method is more effective at reducing the mean square error of the solution and increasing the accuracy of unknowns.
Funder
National Natural Science Foundation of China
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献