Some New Fractional Estimates of Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation

Author:

Khan Muhammad BilalORCID,Mohammed Pshtiwan OthmanORCID,Noor Muhammad Aslam,Baleanu DumitruORCID,Guirao Juan Luis GarcíaORCID

Abstract

It is a familiar fact that interval analysis provides tools to deal with data uncertainty. In general, interval analysis is typically used to deal with the models whose data are composed of inaccuracies that may occur from certain kinds of measurements. In interval analysis, both the inclusion relation (⊆) and pseudo order relation (≤p) are two different concepts. In this article, by using pseudo order relation, we introduce the new class of nonconvex functions known as LR-p-convex interval-valued functions (LR-p-convex-IVFs). With the help of this relation, we establish a strong relationship between LR-p-convex-IVFs and Hermite-Hadamard type inequalities (HH-type inequalities) via Katugampola fractional integral operator. Moreover, we have shown that our results include a wide class of new and known inequalities for LR-p-convex-IVFs and their variant forms as special cases. Useful examples that demonstrate the applicability of the theory proposed in this study are given. The concepts and techniques of this paper may be a starting point for further research in this area.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference56 articles.

1. Sur deux limites d’une intégrale définie;Hermite;Mathesis,1883

2. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann;Hadamard;J. Mathématiques Pures Appliquées,1893

3. New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions

4. Hermite–Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications

5. The Schur multiplicative and harmonic convexities of the complete symmetric function

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3