Critical Indices and Self-Similar Power Transform

Author:

Gluzman Simon

Abstract

“Odd” factor approximants of the special form suggested by Gluzman and Yukalov (J. Math. Chem. 2006, 39, 47) are amenable to optimization by power transformation and can be successfully applied to critical phenomena. The approach is based on the idea that the critical index by itself should be optimized through the parameters of power transform to be calculated from the minimal sensitivity (derivative) optimization condition. The critical index is a product of the algebraic self-similar renormalization which contributes to the expressions the set of control parameters typical to the algebraic self-similar renormalization, and of the power transform which corrects them even further. The parameter of power transformation is, in a nutshell, the multiplier connecting the critical exponent and the correction-to-scaling exponent. We mostly study the minimal model of critical phenomena based on expansions with only two coefficients and critical points. The optimization appears to bring quite accurate, uniquely defined results given by simple formulas. Many important cases of critical phenomena are covered by the simple formula. For the longer series, the optimization condition possesses multiple solutions, and additional constraints should be applied. In particular, we constrain the sought solution by requiring it to be the best in prediction of the coefficients not employed in its construction. In principle, the error/measure of such prediction can be optimized by itself, with respect to the parameter of power transform. Methods of calculation based on optimized power-transformed factors are applied and results presented for critical indices of several key models of conductivity and viscosity of random media, swelling of polymers, permeability in two-dimensional channels. Several quantum mechanical problems are discussed as well.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference68 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3