Spatial Statistical Models: An Overview under the Bayesian Approach

Author:

Louzada FranciscoORCID,Nascimento Diego Carvalho doORCID,Egbon Osafu AugustineORCID

Abstract

Spatial documentation is exponentially increasing given the availability of Big Data in the Internet of Things, enabled by device miniaturization and data storage capacity. Bayesian spatial statistics is a useful statistical tool to determine the dependence structure and hidden patterns in space through prior knowledge and data likelihood. However, this class of modeling is not yet well explored when compared to adopting classification and regression in machine-learning models, in which the assumption of the spatiotemporal independence of the data is often made, that is an inexistent or very weak dependence. Thus, this systematic review aims to address the main models presented in the literature over the past 20 years, identifying the gaps and research opportunities. Elements such as random fields, spatial domains, prior specification, the covariance function, and numerical approximations are discussed. This work explores the two subclasses of spatial smoothing: global and local.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3