The Representation of D-Invariant Polynomial Subspaces Based on Symmetric Cartesian Tensors

Author:

Jiang Xue,Cui Kai

Abstract

Multivariate polynomial interpolation plays a crucial role both in scientific computation and engineering application. Exploring the structure of the D-invariant (closed under differentiation) polynomial subspaces has significant meaning for multivariate Hermite-type interpolation (especially ideal interpolation). We analyze the structure of a D-invariant polynomial subspace Pn in terms of Cartesian tensors, where Pn is a subspace with a maximal total degree equal to n,n≥1. For an arbitrary homogeneous polynomial p(k) of total degree k in Pn, p(k) can be rewritten as the inner products of a kth order symmetric Cartesian tensor and k column vectors of indeterminates. We show that p(k) can be determined by all polynomials of a total degree one in Pn. Namely, if we treat all linear polynomials on the basis of Pn as a column vector, then this vector can be written as a product of a coefficient matrix A(1) and a column vector of indeterminates; our main result shows that the kth order symmetric Cartesian tensor corresponds to p(k) is a product of some so-called relational matrices and A(1).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3