Abstract
In terms of steel alloying elements, generally, nickel is used as an austenite stabilizing element to increase the toughness of steel. The low temperature materials, such as nickel alloy steels with a nickel content of 3.5% to 9%, stainless steel and Invar, show excellent toughness at low (173 K) and cryogenic (108 K) temperatures. In particular, in the shipbuilding industry, it is mainly used for liquefied ethane and Liquefied Natural Gas (LNG) carriers, and research on low-temperature steels are attracting attention again as regulations on environmental issues are strengthened in recent years. Therefore, in this study, fatigue and fracture performances of nickel alloy steel containing 9% or less among nickel alloy steels are evaluated. Moreover, we assess the Fatigue Ductile to Brittle Transition (FDBT) of nickel alloy steels based on crack tip opening displacement (CTOD). In order to discuss the fatigue and fracture performances of nickel alloy steels, microstructure analysis carried out. As a result, CTOD and Fatigue Crack Growth Rate (FCGR) of nickel alloy steels increases as nickel contents increase. In addition, FDBT of 9% nickel alloy steel is the lowest compared to other nickel alloy steels.
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献