Frictional Behavior and Mechanical Performance of Al Reinforced with SiC via Novel Flake Powder Metallurgy

Author:

Alharthi Nabeel H.,Almotairy Saud M.ORCID,Almutairi Abdulrahman M.ORCID

Abstract

This paper targets developing new low-cost sustainable materials. To achieve this objective, aluminum was utilized as base material for metal matrix nanocomposites (MMNC). Three routes of advanced manufacturing techniques were designed and implemented. Flake powder metallurgy as a reliable method to synthesis nanocomposites powder was employed. By reinforcing aluminium with SiC and using a similar amount of both constitutes, three metal matrix nanocomposites (MMNCs) with different properties were produced. The ball milled powder were characterized using filed emission scanning electron microscope (FE-SEM) to analyze the morphology of the powder. Different investigations and analysis were conducted on the produced samples. These include X-ray diffraction (XRD) analysis, density and porosity, mechanical properties, and frictional performance. The obtained results include relative density, Young’s modulus, compressive yield strength, elongation, toughness, hardness, coefficient of friction, and specific wear rate. Achieving superior mechanical and tribological performance is evident from these results. This is accredited to the homogeneity of the reinforcement dispersion within the aluminum matrix.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference62 articles.

1. The production and application of metal matrix composite materials

2. Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites

3. Aluminum Metal–Matrix Composites for Automotive Applications: Tribological Considerations

4. Effect of SiC Reinforcement on Microstructure and Mechanical Properties of Aluminum Metal Matrix Composite;Ajagol,2018

5. 50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities;Kumar;Int. J. Met.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3