Texture Evolution by Strain-Induced Boundary Migration during Hot Deformation of Fe-3.0 wt.% Si Alloy: Experiment and Modeling

Author:

Shao Guangshuai,Chen Xi,Sha Yuhui,Zhang Fang,He ZhenghuaORCID,Zuo LiangORCID

Abstract

Texture and microstructure evolution during high-temperature plane-strain compression in Fe-3.0 wt.% Si alloy has been investigated by micro-texture analysis and modeling. In this study, hot deformation test is performed on the temperature range of 900 °C~1150 °C with a strain rate scope of 0.01 s−1~5 s−1, and the effect of deformation parameters is investigated by means of electron backscattered diffraction. Nucleation and growth assisted by strain-induced boundary migration result in strong {001}<110> and {001}<210> texture components with low Taylor factors, and the grain size of λ fiber increases significantly by consuming the {111}<110> and {111}<112> texture components with high Taylor factors. The critical Taylor factor above which nucleation by strain-induced boundary migration cannot occur, decreases continuously during hot deformation. With the decreasing critical Taylor factor, the increment rate of low-Taylor-factor orientation depends more sensitively on Taylor factor than the decrement rate of high-Taylor-factor orientation. The boundary separating enhanced and weakened orientations moves towards lower Taylor factor with the deformation proceeding, and medium-Taylor-factor texture components may experience a reversed change from enhancement to weakness. A quantitative model is proposed to describe texture development by incorporating the oriented nucleation probability dependent on a variable critical Taylor factor and the selective growth driven by a variable Taylor factor difference between adjacent grains. The present work can provide an efficient method for optimizing hot deformation texture by means of strain-induced boundary migration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3