Effects of Al or Mo Addition on Microstructure and Mechanical Properties of Fe-Rich Nonequiatomic FeCrCoMnNi High-Entropy Alloy

Author:

Wang Shuliang,Chen Luyu,Li Qilin,Wang ShidongORCID,Wu Mingyu,Yang Shuiyuan,Xiang Dinghan

Abstract

In this work, a Fe-rich nonequiatomic Fe40Cr15Co15Mn10Ni20 high-entropy alloy was successfully prepared based on phase analysis and cost reduction. Fe40Cr15Co15Mn10Ni20 high-entropy alloy with a single-phase face-centered cubic (FCC) structure was strengthened by the addition of 11 at.% Al or 10 at.% Mo, and the variations of phase and mechanical properties of the strengthened alloys were subsequently investigated. It has been found that the addition of 11 at.% Al led to the formation of FCC and body-centered cubic (BCC) dual-phase structure in the Fe40Cr15Co10Mn4Ni20Al11 alloy, while its yield strength (σ0.2) and tensile strength increased from 158 ± 4 MPa and 420 ± 20 MPa to 218 ± 7 MPa and 507 ± 16 MPa, respectively, as compared to the single-phase FCC structure Fe40Cr15Co15Mn10Ni20 alloy. The addition of 10 at.% Mo introduced intermetallic compounds of μ and σ phases, which resulted in improved yield strength of 246 ± 15 MPa for the Fe40Cr15Co10Mn5Ni20Mo10 alloy. However, the alloy exhibited premature brittle fracture due to the existence of a large number of intermetallic compounds, which led to deteriorated tensile strength of 346 ± 15 MPa. The findings of this work suggest that the introduced secondary phases by the addition of Al and Mo can effectively strengthen the high-entropy alloy; however, the number of intermetallic compounds should be controlled to achieve a combination of high strength and good ductility, which provides a reference for the follow-up study of nonequiatomic high-entropy alloys.

Funder

Guangxi Key Laboratory of Information Materials (Guilin University of Electronic Technology), P.R. China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3