Understanding the Micro-Mechanical Behaviour of Recast Layer Formed during WEDM of Titanium Alloy

Author:

Basak AnimeshORCID,Pramanik AlokeshORCID,Prakash ChanderORCID,Shankar SubramaniamORCID,Debnath Sujan

Abstract

In the course of wire electro-discharge machining (WEDM), the unavoidable and undesirable formation of a recast layer on titanium (Ti) alloy was observed to have taken place. As a result, subsequent processing steps are required to remove this recast layer. In order to facilitate its removal, this study investigates the micro-mechanical properties of the said recast layer to better understand them. To that end, micro-pillars were fabricated on a recast layer after which in situ micro-pillar compression and nanoindentation were carried out. The in situ compression technique helps visualize deformation of materials in real time with corresponding features in stress–strain curves. The recast layer exhibits relatively brittle behaviour associated with the heat-affected zone (HAZ) and base alloy. Whereas the base alloy experienced substantial work hardening as evidenced by the formation of slip/shear bands, the recast layer was found to break down under external loading without any visible strain accommodation. This understanding of the recast layers could facilitate the design of effective removal operations, saving time and money. In addition, the recast layer might be useful in some applications.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3