Correlation between Flotation and Rheology of Fine Particle Suspensions

Author:

Sajjad MohsinORCID,Otsuki Akira

Abstract

This paper summarizes and discusses previous investigations into the correlation between the rheology and flotation process of fine particle suspensions. This summary provides a better understanding of the challenges and current status of this subject and useful feedback based on the revision of relevant theories and practical implications for fine particle characterization and processing. Such processes include the sustainable beneficiation of complex ores and wastes for valuable material extraction and the segregation of toxic substances. For example, there has been increasing demand for the beneficiation of complex ores often carrying the values (e.g., critical raw materials) in fine grains, due to the noticeable decrease in the accessibility of high-grade and easily extractable ores. To maintain the sustainable use of limited resources, the effective beneficiation of complex ores is urgently required. It can be successfully achieved only with selective particle/mineral dispersion/liberation and the assistance of mineralogical and fine particle characterization including a proper understanding of the rheological behavior of complex ores in the context of fine particle separation/processing. In correlating flotation with suspension rheology, previous works were summarized and we found that the modeling of their correlations as well as comprehensive contributions of pulp and froth rheology on flotation performance have been studied very limitedly, and comprehensive developments in these aspects are thus strongly suggested.

Funder

European Union

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference230 articles.

1. Use of Microorganisms for Complex ORE Beneficiation: Bioflotation as an Example;Otsuki,2016

2. Characterisation and Beneficiation of Complex Ores for Sustainable Use of Mineral Resources: Refractory Gold Ore Beneficiation as an Example

3. Adsorption of Surfactants and Its Influence on the Hydrodynamics of Flotation;Somasundaran,2007

4. Study on the Review of the List of Critical Raw Materials,2017

5. Study on the EU’s List of Critical Raw Materials;Blengini,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3