Mineralogical and Chemical Changes after Reduction Roasting of Xinjiang Iron Ore, China

Author:

Mustafa SayafORCID,Luo Liqun,Zheng Botao,Wei Chenxi,Christophe Niyonzima

Abstract

The mineralogical and chemical changes in Chinese Xinjiang iron ore containing impurities, lead, and zinc as a result of reduction roasting were studied via chemical analysis, optical microscopy, X-ray fluorescence (XRF), electron probe microanalysis (EPMA), and energy-dispersive spectroscopy (EDS). Analysis showed that hematite was the main iron-bearing mineral, with small amounts of magnetite and iron silicate; lead impurities were mainly lead oxide and lead–iron alum, while zinc oxide was the main zinc impurity. X-ray fluorescence analysis for raw samples indicated the presence of quartz, hematite, magnetite, chlorite, calcite, and dolomite. The results of the analysis of roasted samples showed an increase in hematite at temperatures of 750 °C and 950 °C, while the elemental iron increased at a temperature of 1200 °C, along with the conversion of galena to lead oxide and sphalerite to zinc oxide, with a stable quartz ratio. The chemical analysis of the raw sample showed that the TFe grade of the sample was 47.04%, while the contents of harmful Pb and Zn impurities were 0.39% and 0.30%, respectively, both of which exceed the index (less than 0.10%) required by the iron industry for raw materials. The content of harmful sulfur impurities was also high, at 1.19%, which needs to be eliminated or reduced. The results of EPMA and EDS analysis of pre-roasting raw samples showed that chemical compositions vary in different locations in the hematite, magnetite, sphalerite, and galena micro-zones. It has also been observed that quartz is mostly diffused with magnetite and hematite, and sulfur appears in small quantities in most regions. The analysis after roasting showed that the percentages of lead, zinc, and sulfur impurities decreased by a large rate. It is clear that the roasting process plays a major role in removing impurities such as sulfur, which appears in a small percentage after the roasting process, and also helps in oxidizing the impurities of lead and zinc, which helps in removing them.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3