Calibration of the Flow Curve Up to Large Strain Range by Incremental Sheet Forming Coupled with FEM Simulation

Author:

Kim Young-SukORCID,Tuan Pham-QuocORCID,Xiao Xiao,Kim Jin-jaeORCID

Abstract

Conventionally, a stress–strain curve for sheet materials is defined by the uniaxial tensile test; however, it is limited by the necking phenomena. The stress–strain curve in the post-necking range is determined using common hardening equations, such as the Swift or Voce equation. Nevertheless, the accuracy of this flow curve in the extrapolation range is questionable. In this study, the inverse method using incremental sheet forming coupled with FEM simulation was used to calibrate the stress–strain curve up to a large strain range. In the incremental sheet forming experiment, the forming force was monitored in the whole process until fracture. Then, FEM simulation by ABAQUS/Explicit was performed using the incremental stress–strain curve, accompanied by Hill’s 1948 yield behavior. The incremental stress–strain curve was calculated using the β parameter, which was systematically assigned to adjust the trial stress at each strain increment of the FEM process. The correct incremental stress–strain curve was determined when the force prediction was in good agreement with the experiment.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3