β-Phosphonated Glycine Pendant Groups Grafted on Styrene-6.7% Divinylbenzene Copolymers: Synthesis and Their Application as Photocatalysts

Author:

Popa Adriana1,Cocheci Laura2ORCID,Lupa Lavinia2ORCID,Pop Aniela2ORCID,Visa Aurelia1ORCID

Affiliation:

1. “Coriolan Dragulescu” Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania

2. Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, 6 Vasile Parvan Blv., 300223 Timisoara, Romania

Abstract

Environmental pollution from organic contaminants caused by textile dyeing is a real danger. Wastewater from the textile industry has high organic loads, as well as dyes and chemical compounds used in their preparation. Among the azo dyes, Congo red (CR) dye is widely used as a model in the experimental studies of textile wastewater treatment. Heterogeneous photocatalysis consists of UV or VIS light irradiation of various types of organic compounds in water in the presence of a solid catalyst; it is considered an important technique for the purification and reuse of aqueous effluents. In the present study, two novel compounds of β-phosphonate-type glycine pendant groups grafted on S-DVB copolymer were used for the decontamination of Congo red dye polluted water. They were characterized by FTIR spectroscopy, scanning electron microscopy, EDX spectroscopy, thermogravimetric analysis and UV-VIS spectroscopy. By using 25 mg/L initial concentration of Congo red dye and a catalyst concentration of 1 g/L and 240 min of irradiation, a photocatalysis efficiency of 98.6% in the case of [(diethyl)(phosphono)methylene]glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (EthylAmAcid material), and of 83.1% in the case of [(dibenzyl)(phosphono)methylene]glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (BenzylAmAcid material), respectively, was achieved.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3