Multi-Level Optimization for Data-Driven Camera–LiDAR Calibration in Data Collection Vehicles

Author:

Jiang Zijie1,Cai Zhongliang1ORCID,Hui Nian1,Li Bozhao1

Affiliation:

1. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China

Abstract

Accurately calibrating camera–LiDAR systems is crucial for achieving effective data fusion, particularly in data collection vehicles. Data-driven calibration methods have gained prominence over target-based methods due to their superior adaptability to diverse environments. However, current data-driven calibration methods are susceptible to suboptimal initialization parameters, which can significantly impact the accuracy and efficiency of the calibration process. In response to these challenges, this paper proposes a novel general model for the camera–LiDAR calibration that abstracts away the technical details in existing methods, introduces an improved objective function that effectively mitigates the issue of suboptimal parameter initialization, and develops a multi-level parameter optimization algorithm that strikes a balance between accuracy and efficiency during iterative optimization. The experimental results demonstrate that the proposed method effectively mitigates the effects of suboptimal initial calibration parameters, achieving highly accurate and efficient calibration results. The suggested technique exhibits versatility and adaptability to accommodate various sensor configurations, making it a notable advancement in the field of camera–LiDAR calibration, with potential applications in diverse fields including autonomous driving, robotics, and computer vision.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3