A Novel Densely Packed 4 × 4 MIMO Antenna Design for UWB Wireless Applications

Author:

Khan Owais1,Khan Shahid1ORCID,Marwat Safdar Nawaz Khan2ORCID,Gohar Neelam3ORCID,Bilal Muhammad4,Dalarsson Mariana5ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad-Campus, Abbottabad 22060, Pakistan

2. Department of Computer Systems Engineering, Faculty of Electrical and Computer Engineering, University of Engineering and Technology Peshawar, Peshawar 25120, Pakistan

3. Department of Computer Science, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan

4. Department of Information Engineering Technology, University of Technology Nowshera, Nowshera 24100, Pakistan

5. School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, SE 100-44 Stockholm, Sweden

Abstract

In this article, a compact 4-port UWB (Ultra-Wide Band) MIMO (Multiple Input Multiple Output) antenna is proposed. A low profile FR-4 substrate is used as a dielectric material with the dimensions of 58 × 58 mm2 (0.52λ × 0.52λ) at 2.8 GHz and a standard thickness of 1.6 mm. The proposed design characterizes an impedance bandwidth starting from 2.8 to 12.1 GHz (124.1%). Each of the four elements of the proposed MIMO antenna configuration consists of a monopole antenna with PG (partial ground) that has a slot at its center. The corner of each patch (radiator) and ground slot are rounded for impedance matching. Each unit cell is in an orthogonal orientation, forming a quad-port MIMO antenna system. For reference, the partial ground of each unit cell is connected meticulously with the others. The simulated results of the proposed quad-port MIMO antenna design were configured and validated by fabrication and testing. The proposed Quad-port MIMO design has a 6.57 dBi peak gain and 97% radiation efficiency. The proposed design has good isolation below 15 dB in the lower frequency range and below 20 dB in the higher frequency range. The design has a measured ECC (Envelop Correlation Co-efficient) of 0.03 and DG (Diversity Gain) of 10 dB. The value of TARC (Total Active Reflection Coefficient) over the entire operating band is less than 10 dB. Moreover, the design maintained CCL (Channel Capacity Loss) < 0.4 bits/sec/Hz and MEG (Mean Effective Gain) < 3 dB. Based on the obtained results, the proposed design is suitable for the intended high data rate UWB wireless communication portable devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3