Effect of Complex Road Networks on Intensive Land Use in China’s Beijing-Tianjin-Hebei Urban Agglomeration

Author:

Zeng Chen,Zhao Zhe,Wen Cheng,Yang Jing,Lv Tianyu

Abstract

Coupled with rapid urbanization and urban expansion, the spatial relationship between transportation development and land use has gained growing interest among researchers and policy makers. In this paper, a complex network model and land use intensity assessment were integrated into a spatial econometric model to explore the spatial spillover effect of the road network on intensive land use patterns in China’s Beijing–Tianjin–Hebei (BTH) urban agglomeration. First, population density, point of interest (POI) density, and aggregation index were selected to measure land use intensity from social, physical, and ecological aspects. Then, the indicator of average degree (i.e., connections between counties) was used to measure the characteristics of the road network. Under the hypothesis that the road network functions in shaping land use patterns, a spatial econometric model with the road network embedded spatial weight matrix was established. Our results revealed that, while the land use intensity in the BTH urban agglomeration increased from 2010 to 2015, the road network became increasingly complex with greater spatial heterogeneity. The spatial lag coefficients of land use intensity were positively significant in both years and showed a declining trend. The spatially lagged effects of sector structure, fixed asset investment, and consumption were also significant in most of our spatial econometric models, and their contributions to the total spillover effect increased from 2010 to 2015. This study contributes to the literature by providing an innovative quantitative method to analyze the spatial spillover effect of the road network on intensive land use. We suggest that the spatial spillover effect of the road network could be strengthened in the urban–rural interface areas by improving accessibility and promoting population, resource, and technology flows.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3