Study on Dynamic Early Warning of Flash Floods in Hubei Province

Author:

Tu Yong1,Zhao Yanwei2,Meng Lingsheng3,Tang Wei4,Xu Wentao5,Tian Jiyang1,Lyu Guomin1,Qiao Nan1

Affiliation:

1. China Institute of Water Resource and Hydropower Research, Beijing 100038, China

2. College of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

3. Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center, Wuhan 430064, China

4. Department of Water Resources of Hubei Province, Wuhan 430064, China

5. Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010, China

Abstract

Flash floods are ferocious and destructive, making their forecasting and early warning difficult and easily causing casualties. In order to improve the accuracy of early warning, a dynamic early warning index system was established based on the distributed spatio-temporally mixed model through a case study of riverside villages in Hubei Province. Fully taking into account previous rainfall and assuming different rainfall conditions, this work developed a dynamic early warning threshold chart by determining critical rainfall thresholds at different soil moisture levels (dry, normal, wet, and saturated) through pilot calculations, to support a quick query of the critical rainfall at any soil moisture level. The research results show that of the 74 counties and districts in Hubei Province, more than 50% witnessed higher mean critical rainfall than empirical thresholds when the soil was saturated, and about 90% did so when the soil was dry. In 881 towns, a total of 456 early warnings were generated based on dynamic thresholds from 2020 to 2022, 15.2% more than those based on empirical thresholds. From the perspective of total rainfall, dynamic early warnings were generated more frequently in wet years, while empirical early warnings were more frequent in dry years, and the frequency of two warnings were roughly the same in normal years. There were more early warnings based on empirical thresholds in May each year, but more based on dynamic thresholds in June and July, and early warnings generated based on the two methods were almost equal in August and September. Spatially, after dynamic early warning thresholds were adopted, Shiyan and Xiangyang, both northwestern cities in Hubei Province, witnessed significant increases in early warnings. In terms of the early warning mechanism, dynamic early warning took into account the impact of soil moisture and analyzed the flood discharge capacity of river channels according to the flood stage of the riverside villages. On this basis, the rainfall early warning thresholds under different conditions were determined. This is a refined early warning method that could improve the accuracy of flash flood warnings in Hubei Province.

Funder

National Natural Science Foundation of China

Hubei Flash Flood Prevention Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3