Absorption and Utilization of Pollutants in Water: A Novel Model for Predicting the Carrying Capacity and Sustainability of Buildings

Author:

Mei Enyang12ORCID,Yu Kunyang3

Affiliation:

1. School of Bioengineering, Huainan Normal University, Huainan 232038, China

2. Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China

3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

Abstract

The combination of water management and urban planning can promote the sustainable development of cities, which can be achieved through buildings’ absorption and utilization of pollutants in water. Sulfate ions are one of the important pollutants in water, and concrete is an important building material. The absorption of sulfate ions by concrete can change buildings’ bearing capacity and sustainability. Nevertheless, given the complex and heterogeneous nature of concrete and a series of chemical and physical reactions, there is currently no efficient and accurate method for predicting mechanical performance. This work presents a deep learning model for establishing the relationship between a water environment and concrete performance. The model is constructed using an experimental database consisting of 1328 records gathered from the literature. The utmost essential parameters influencing the compressive strength of concrete under a sulfate attack such as the water-to-binder ratio, the sulfate concentration and type, the admixture type and percentage, and the service age are contemplated as input factors in the modeling process. The results of using several loss functions all approach 0, and the error between the actual value and the predicted value is small. Moreover, the results also demonstrate that the method performed better for predicting the performance of concrete under water pollutant attacks compared to seven basic machine learning algorithms. The method can serve as a reference for the integration of urban building planning and water management.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3