Affiliation:
1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
In synthetic aperture radar (SAR) signal processing, compared with the raw data of level-0, level-1 SAR images are more readily accessible and available in larger quantities. However, an amount of level-1 images are affected by radio frequency interference (RFI), which typically originates from Linear Frequency Modulation (LFM) signals emitted by ground-based radars. Existing research on interference suppression in level-1 data has primarily focused on two methods: transforming SAR images into simulated echo data for interference suppression, or focusing interference in the frequency domain and applying notching filters to reduce interference energy. However, these methods overlook the effective utilization of the interference parameters or are confined to suppressing only one type of LFM interference at a time. In certain SAR images, multiple types of LFM interference manifest bright radiation artifacts that exhibit varying lengths along the range direction while remaining constant in the azimuth direction. It is necessary to suppress multiple LFM interference on SAR images when original echo data are unavailable. This article proposes a joint sparse recovery algorithm for interference suppression in the SAR image domain. In the SAR image domain, two-dimensional LFM interference typically exhibits differences in parameters such as frequency modulation rate and pulse width in the range direction, while maintaining consistency in the azimuth direction. Based on this observation, this article constructs a series of focusing operators for LFM interference in SAR images. These operators enable the sparse representation of dispersed LFM interference. Subsequently, an optimization model is developed that can effectively suppress multi-LFM interference and reduce image loss with the assistance of a regularization term in the image domain. Simulation experiments conducted in various scenarios validate the superior performance of the proposed method.
Funder
National Natural Science Foundation of China
Nature Science Foundation of Jiangsu Province
China Postdoctoral Science Foundation
Jiangsu Province Postdoctoral Science Foundation
Reference40 articles.
1. Carrara, W.G., Goodman, R.S., and Majewski, R.M. (1995). Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House.
2. L-band radio interferences observed by the JERS-1 SAR and its global distribution;Shimada;Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05,2005
3. Rosen, P.A., Hensley, S., and Le, C. (2008, January 26–30). Observations and mitigation of RFI in ALOS PALSAR SAR data: Implications for the DESDynI mission. Proceedings of the 2008 IEEE Radar Conference, Rome, Italy.
4. Research on Methods for Narrow-Band Interference Suppression in Synthetic Aperture Radar Data;Zhou;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2015
5. Detection and suppression of narrow band RFI for synthetic aperture radar imaging;Yang;Chin. J. Aeronaut.,2015