CRABPs Alter all-trans-Retinoic Acid Metabolism by CYP26A1 via Protein-Protein Interactions

Author:

Yabut King Clyde B.ORCID,Isoherranen NinaORCID

Abstract

Cellular retinoic acid binding proteins (CRABP1 and CRABP2) bind all-trans-retinoic acid (atRA), the active metabolite of vitamin A, with high affinity. CRABP1 and CRABP2 have been shown to interact with the atRA-clearing cytochrome P450 enzymes CYP26B1 and CYP26C1 and with nuclear retinoic acid receptors (RARs). We hypothesized that CRABP1 and CRABP2 also alter atRA metabolism and clearance by CYP26A1, the third key atRA-metabolizing enzyme in the CYP26 family. Based on stopped-flow experiments, atRA bound CRABP1 and CRABP2 with Kd values of 4.7 nM and 7.6 nM, respectively. The unbound atRA Km values for 4-OH-atRA formation by CYP26A1 were 4.7 ± 0.8 nM with atRA, 6.8 ± 1.7 nM with holo-CRABP1 and 6.1 ± 2.7 nM with holo-CRABP2 as a substrate. In comparison, the apparent kcat value was about 30% lower (0.71 ± 0.07 min−1 for holo-CRABP1 and 0.75 ± 0.09 min−1 for holo-CRABP2) in the presence of CRABPs than with free atRA (1.07 ± 0.08 min−1). In addition, increasing concentrations in apo-CRABPs decreased the 4-OH-atRA formation rates by CYP26A1. Kinetic analyses suggest that apo-CRABP1 and apo-CRABP2 inhibit CYP26A1 (Ki = 0.39 nM and 0.53 nM, respectively) and holo-CRABPs channel atRA for metabolism by CYP26A1. These data suggest that CRABPs play a critical role in modulating atRA metabolism and cellular atRA concentrations.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3