An Ultra-Low-Voltage Approach to Accurately Set the Quiescent Current of Digital Standard Cells Used for Analog Design and Its Application on an Inverter-Based Operational Transconductance Amplifier

Author:

Della Sala Riccardo1ORCID,Centurelli Francesco1ORCID,Scotti Giuseppe1ORCID

Affiliation:

1. Department of Information Electronic and Telecommunication (DIET), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

An approach to design analog building blocks based on digital standard cells is presented in this work. By ensuring that every CMOS inverter from a standard-cell library operates with a well-defined quiescent current and output voltage, the suggested method makes it possible to construct analog circuits that are resistant against PVT variations. The method uses the local supply voltages connected to the source terminals of the p-channel and n-channel MOS transistors of the standard-cell inverters as control inputs. It is based on adaptive supply voltage generator (ASVG) reusable blocks, which are comparable to those used in digital applications to handle process variations. All of the standard-cell inverters used for analog functions receive the local supply voltages produced by the ASVGs, which enable setting each cell’s quiescent current to a multiple of a reference current and each cell’s static output voltage to an appropriate reference voltage. Both the complete custom design of the ASVG blocks and a theoretical study of the feedback loop of the ASVG are presented. An application example through the design of a fully synthesizable two-stage operational transconductance amplifier (OTA) is also provided. The TSMC 180 nm CMOS technology has been used to implement both the OTA and the ASV generators. Simulation results have demonstrated that the proposed approach allows to accurately set the quiescent current of standard-cell inverters, dramatically reducing the effect of PVT variations on the pmain performance parameters of the standard-cell-based two-stage OTA.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3