A Low-Power, 65 nm 24.6-to-30.1 GHz Trusted LC Voltage-Controlled Oscillator Achieving 191.7 dBc/Hz FoM at 1 MHz

Author:

Kurtoglu Abdullah1ORCID,Shirazi Amir H. M.2,Mirabbasi Shahriar2,Miri Lavasani Hossein1ORCID

Affiliation:

1. Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA

2. Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

This work presents a novel trusted LC voltage-controlled oscillator (VCO) with an embedded compact analog Physically Unclonable Function (PUF) used for authentication. The trusted VCO is implemented in a 1P9M 65 nm standard CMOS process and consumes 1.75 mW. It exhibits a measured phase noise (PN) of −104.8 dBc/Hz @ 1 MHz and −132.2 dBc/Hz @ 10 MHz offset, resulting in Figures of Merit (FoMs) of 191.7 dBc/Hz and 199.1 dBc/Hz, respectively. With the measured frequency tuning range (TR) of ~5.5 GHz, the FoM with tuning (FoMT) reaches 197.6 dBc/Hz and 205.0 dBc/Hz at 1 MHz and 10 MHz offset, respectively. The analog PUF consists of CMOS cross-coupled pairs in the main VCO to change analog characteristics. Benefiting from the impedance change and parasitic capacitance of the cross-coupled pairs, the AC and DC responses of the VCO are utilized for multiple responses for each input. The PUF consumes 0.83 pJ/bit when operating at 1.5 Gbps. The proposed PUF exhibits a measured Inter-Hamming Distance (HD) of 0.5058b and 0.4978b, with Intra-HD reaching 0.0055b and 0.0053b for the current consumption and fosc, respectively. The autocorrelation function (ACF) of 0.0111 and 0.0110 is obtained for the current consumption and fosc, respectively, at a 95% confidence level.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Reference35 articles.

1. Next Generation 5G Wireless Networks: A Comprehensive Survey;Agiwal;IEEE Commun. Surv. Tutor.,2016

2. Analog/RF IP Protection: Attack Models, Defense Techniques, and Challenges;Jayasankaran;IEEE Trans. Circuits Syst. II-Express Briefs,2021

3. RF Transceiver Security against Piracy Attacks;Rizo;IEEE Trans. Circuits Syst. II-Express Briefs,2022

4. Skorobogatov, S. (2005). Semi-Invasive Attacks—A New Approach to Hardware Security Analysis, University of Cambridge, Computer Laboratory. Technical Report.

5. Tehranipoor, M., and Wang, C. (2012). Introduction to Hardware Security and Trust, Springer Science & Business Media.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3