Modeling Excitable Cells with Memristors

Author:

Sah Maheshwar12ORCID,Ascoli Alon3,Tetzlaff Ronald4,Rajamani Vetriveeran5ORCID,Budhathoki Ram Kaji6

Affiliation:

1. Department of Electronics and Communication Engineering, Nepal Engineering College, Changunarayan 44801, Nepal

2. TJ Maxx Distribution Center, Evansville, IN 47711, USA

3. Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

4. Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, Technische Universität Dresden, 01062 Dresden, Germany

5. School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore 632014, India

6. Department of Electrical and Electronics Engineering, Kathmandu University, Dhulikhel 45210, Nepal

Abstract

This paper presents an in-depth analysis of an excitable membrane of a biological system by proposing a novel approach that the cells of the excitable membrane can be modeled as the networks of memristors. We provide compelling evidence from the Chay neuron model that the state-independent mixed ion channel is a nonlinear resistor, while the state-dependent voltage-sensitive potassium ion channel and calcium-sensitive potassium ion channel function as generic memristors from the perspective of electrical circuit theory. The mechanisms that give rise to periodic oscillation, aperiodic (chaotic) oscillation, spikes, and bursting in an excitable cell are also analyzed via a small-signal model, a pole-zero diagram of admittance functions, local activity, the edge of chaos, and the Hopf bifurcation theorem. It is also proved that the zeros of the admittance functions are equivalent to the eigen values of the Jacobian matrix, and the presence of the positive real parts of the eigen values between the two bifurcation points lead to the generation of complicated electrical signals in an excitable membrane. The innovative concepts outlined in this paper pave the way for a deeper understanding of the dynamic behavior of excitable cells, offering potent tools for simulating and exploring the fundamental characteristics of biological neurons.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Simplest Memristor Oscillator is blessed with an Edge of Chaos Kernel;Journal of Electrical Engineering & Technology;2024-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3