Author:
Jo Gahyung,Kwon Jae-Min,Cho Ara,Chung Hyun-Kyung,Hong Bong-Guen
Abstract
An inventive method was applied to determine the minimum major radius, R0, and the optimum build of a tokamak fusion reactor that simultaneously meets all physics, engineering, and neutronics constraints. With a simple cost model, tokamak systems analyses were carried out over ranges of system parameters to find an optimum build of a tokamak fusion reactor at minimum cost. The impact of a wide range of physics parameters and advanced engineering elements on costs were also addressed. When a central solenoid was used to ramp up a plasma current, design solutions with a cost of electricity (COE) between 109 and 140 mills/kWh, direct capital cost between 5000 and 6000 M/USD, and net electric power, Pe between 1000 and 1600 MW could be found with a minimum R0 between 6.0 and 7.0 m, and fusion power, Pfusion between 2000 and 2800 MW. When the plasma current was driven by a non-inductive external system, the system size and costs could be reduced further; a COE between 98 and 130 mills/kWh, direct capital cost between 4000 and 5000 M$, and Pe between 1000 and 1420 MW could be found with a minimum R0 between 5.1 and 6.7 m, and Pfusion between 2000 and 2650 MW.
Funder
Ministry of Science and ICT, South Korea
Jeonbuk National University
National Research Foundation of Korea
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献