Abstract
It is commonplace for people to perform various kinds of activities in groups. The recognition of human groups is of importance in many applications including crowd evacuation, teamwork coordination, and advertising. Existing group recognition approaches require snapshots of human trajectories, which is often impossible in the reality due to different data collection start time and frequency, and the inherent time deviations of devices. This study proposes an approach to synchronize the data of people for group recognition. All people’s trajectory data are aligned by using data interpolating. The optimal interpolating points are computed based on our proposed error function. Moreover, the time deviations among devices are estimated and eliminated by message passing. A real-life data set is used to validate the effectiveness of the proposed approach. The results show that 97.7% accuracy of group recognition can be achieved. The approach proposed to deal with time deviations was also proven to lead to better performance compared to that of the existing approaches.
Funder
National Key R&D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献