Synthesis and Properties of Polyimide Silica Nanocomposite Film with High Transparent and Radiation Resistance

Author:

Huang Jindong,Zhang Guanglu,Dong Beiping,Liu Juncheng

Abstract

In order to prepare flexible glass cover sheet materials suitable for space solar cells, fluorinated diamine 2,2’-bistrifluoromethyl benzidine (TFDB) and fluorinated dianhydride 4,4’ (hexafluoroisopropyl) diphthalic dianhydride (6FDA) as the monomer, polyimide (PI)/SiO2 composite film was synthesized by in situ polymerization, and the influence of coupling agent and SiO2 nanoparticle content on the film structure and properties was studied. The results show that PI synthesized from fluorine-containing monomers has better light transmittance, and the highest transmittance can reach 91.4%. The average visible light transmittance of the composite film decreases with the increase of SiO2 content, and the transmittance of the film decreases less in the high-wavelength region and greatly decreases in the low-wavelength region. The tensile strength and elastic modulus of PI/SiO2 composite film increase with the increase of SiO2 content, first increase and then decrease, reaching the maximum when the content is 10%; while the elongation at break of the composite film gradually increases with the increase of SiO2 content reduce. The thermal stability of PI/SiO2 composite film increases with the increase of SiO2 content. The doping of nano-SiO2 significantly suppresses the influence of irradiation on the mechanical properties of the film.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference24 articles.

1. Polyimide: The Relationship between Chemistry, Structure and Properties and Materials;Ding,2006

2. Research on high temperature resistant polyimide resin;Yang;Polym. Bull.,2014

3. High transparent soluble polyimide/silica hybrid optical thin films

4. Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides

5. Synthesis and characterization of colorless polyimide nanocomposite films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3