The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms

Author:

Skorupska Malgorzata,Kamedulski PiotrORCID,Lukaszewicz Jerzy P.,Ilnicka AnnaORCID

Abstract

This paper addresses the problem of improving electrochemical energy storage with electrode materials obtained from common raw ingredients in a facile synthesis. In this study, we present a simple, one-pot route of synthesizing microporous carbon via a very fast reaction of sucrose and graphene (carbon source), chitosan (carbon and nitrogen source), and H3PO4. Porous carbons were successfully produced during high temperature carbonization, using nitrogen as a shielding gas. Samples were characterized using X-ray powder diffractometry, elemental analysis, N2 adsorption-desorption measurements, scanning electron microscopy, and Raman spectroscopy. The developed carbon material possessed a high surface area, up to 1313 m2 g−1, with no chemical or physical activators used in the process. The structural parameters of the microporous carbons varied depending on the ratio of reagents and mass composition. Samples were prepared both with and without chitosan. The present synthesis route has the advantages of being a single-step approach and only involving low-cost and environmentally friendly sources of carbon. More importantly, microporous carbon was prepared without any activators and potentially offers great application in supercapacitors. Cyclic voltammetry and constant current charge–discharge tests show that sucrose-based porous carbons show excellent electrochemical performance with a specific capacitance of up to 143 F g−1 at a current density of 1 A g−1 in a 6 M KOH electrolyte.

Funder

National Science Centre

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3