Emerging Hybrid Nanocomposite Photocatalysts for the Degradation of Antibiotics: Insights into Their Designs and Mechanisms

Author:

Rokesh Karuppannan,Sakar MohanORCID,Do Trong-OnORCID

Abstract

The raising occurrence of antibiotics in the global water bodies has received the emerging concern due to their potential threats of generating the antibiotic-resistive and genotoxic effects into humans and aquatic species. In this direction, the solar energy assisted photocatalytic technique offers a promising solution to address such emerging concern and paves ways for the complete degradation of antibiotics with the generation of less or non-toxic by-products. Particularly, the designing of hybrid photocatalyticcomposite materials has been found to show higher antibiotics degradation efficiencies. As the hybrid photocatalysts are found as the systems with ideal characteristic properties such as superior structural, surface and interfacial properties, they offer enhanced photoabsorbance, charge-separation, -transfer, redox properties, photostability and easy recovery. In this context, this review study presents an overview on the recent developments in the designing of various hybrid photocatalytic systems and their efficiency towards the degradation of various emerging antibiotic pharmaceutical contaminants in water environments.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3