Perspectives on Atomic-Scale Switches for High-Frequency Applications Based on Nanomaterials

Author:

Dragoman MirceaORCID,Aldrigo MartinoORCID,Dragoman Daniela

Abstract

Nanomaterials science is becoming the foundation stone of high-frequency applications. The downscaling of electronic devices and components allows shrinking chip’s dimensions at a more-than-Moore rate. Many theoretical limits and manufacturing constraints are yet to be taken into account. A promising path towards nanoelectronics is represented by atomic-scale materials. In this manuscript, we offer a perspective on a specific class of devices, namely switches designed and fabricated using two-dimensional or nanoscale materials, like graphene, molybdenum disulphide, hexagonal boron nitride and ultra-thin oxides for high-frequency applications. An overview is provided about three main types of microwave and millimeter-wave switch: filament memristors, nano-ionic memristors and ferroelectric junctions. The physical principles that govern each switch are presented, together with advantages and disadvantages. In the last part we focus on zirconium-doped hafnium oxide ferroelectrics (HfZrO) tunneling junctions (FTJ), which are likely to boost the research in the domain of atomic-scale materials applied in engineering sciences. Thanks to their Complementary Metal-Oxide Semiconductor (CMOS) compatibility and low-voltage tunability (among other unique physical properties), HfZrO compounds have the potential for large-scale applicability. As a practical case of study, we present a 10 GHz transceiver in which the switches are FTJs, which guarantee excellent isolation and ultra-fast switching time.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference29 articles.

1. The Electronics at Atomic Scale beyond CMOS;Dragoman,2021

2. RF Mems: Theory, Design and Technology;Rebeiz,2004

3. Capacitive and ohmic RF NEMS switches based on vertical carbon nanotubes

4. 2D Nanoelectronics Physics and Devices of Atomically Thin Materials;Dragoman,2017

5. The missing memristor found

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3