Self-Driving Laboratories for Development of New Functional Materials and Optimizing Known Reactions

Author:

Soldatov Mikhail A.ORCID,Butova Vera V.ORCID,Pashkov DanilORCID,Butakova Maria A.ORCID,Medvedev Pavel V.ORCID,Chernov Andrey V.ORCID,Soldatov Alexander V.ORCID

Abstract

Innovations often play an essential role in the acceleration of the new functional materials discovery. The success and applicability of the synthesis results with new chemical compounds and materials largely depend on the previous experience of the researcher himself and the modernity of the equipment used in the laboratory. Artificial intelligence (AI) technologies are the next step in developing the solution for practical problems in science, including the development of new materials. Those technologies go broadly beyond the borders of a computer science branch and give new insights and practical possibilities within the far areas of expertise and chemistry applications. One of the attractive challenges is an automated new functional material synthesis driven by AI. However, while having many years of hands-on experience, chemistry specialists have a vague picture of AI. To strengthen and underline AI’s role in materials discovery, a short introduction is given to the essential technologies, and the machine learning process is explained. After this review, this review summarizes the recent studies of new strategies that help automate and accelerate the development of new functional materials. Moreover, automatized laboratories’ self-driving cycle could benefit from using AI algorithms to optimize new functional nanomaterials’ synthetic routes. Despite the fact that such technologies will shape material science in the nearest future, we note the intelligent use of algorithms and automation is required for novel discoveries.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3