Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review

Author:

Aiduang Worawoot,Chanthaluck AthipORCID,Kumla JaturongORCID,Jatuwong Kritsana,Srinuanpan SirasitORCID,Waroonkun TanutORCID,Oranratmanee Rawiwan,Lumyong Saisamorn,Suwannarach NakarinORCID

Abstract

The continually expanding use of plastic throughout our world, along with the considerable increase in agricultural productivity, has resulted in a worrying increase in global waste and related environmental problems. The reuse and replacement of plastic with biomaterials, as well as the recycling of agricultural waste, are key components of a strategy to reduce plastic waste. Agricultural waste is characterized as lignocellulosic materials that mainly consist of cellulose, hemicellulose, and lignin. Saprobe fungi are able to convert agricultural waste into nutrients for their own growth and to facilitate the creation of mycelium-based composites (MBC) through bio-fabrication processes. Remarkably, different fungal species, substrates, and pressing and drying methods have resulted in varying chemical, mechanical, physical, and biological properties of the resulting composites that ultimately vary the functional aspects of the finished MBC. Over the last two decades, several innovative designs have produced a variety of MBC that can be applied across a range of industrial uses including in packaging and in the manufacturing of household items, furniture, and building materials that can replace foams, plastics, and wood products. Materials developed from MBC can be considered highly functional materials that offer renewable and biodegradable benefits as promising alternatives. Therefore, a better understanding of the beneficial properties of MBC is crucial for their potential applications in a variety of fields. Here, we have conducted a brief review of the current findings of relevant studies through an overview of recently published literature on MBC production and the physical, mechanical, chemical, and biological properties of these composites for use in innovative architecture, construction, and product designs. The advantages and disadvantages of various applications of mycelium-based materials (MBM) in various fields have been summarized. Finally, patent trends involving the use of MBM as a new and sustainable biomaterial have also been reviewed. The resulting knowledge can be used by researchers to develop and apply MBC in the form of eco-friendly materials in the future.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference150 articles.

1. Plastic Pollution https://www.britannica.com/science/plastic-pollution

2. Introduction to plastics;Shrivastava,2018

3. Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries

4. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review

5. Plastic waste problem and education for plastic waste management;Chow,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3