Development of Insert Condition Classification System for CNC Lathes Using Power Spectral Density Distribution of Accelerometer Vibration Signals

Author:

Huang Yi-Wen,Yeh Syh-ShiuhORCID

Abstract

Insert conditions significantly influence the product quality and manufacturing efficiency of lathe machining. This study used the power spectral density distribution of the vibration signals of a lathe machining accelerometer to design an insert condition classification system applicable to different machining conditions. For four common lathe machining insert conditions (i.e., built-up edge, flank wear, normal, and fracture), herein, the insert condition classification system was established with two stages—insert condition modeling and machining model fusion. In the insert condition modeling stage, the magnitude features of the segmented frequencies were captured according to the power spectral density distributions of the accelerometer vibration signals. Principal component analysis and backpropagation neural networks were used to develop insert condition models for different machining conditions. In the machining model fusion stage, a backpropagation neural network was employed to establish the weight function between the machining conditions and insert condition models. Subsequently, the insert conditions were classified based on the calculated weight values of all the insert condition models. Cutting tests were performed on a computer numerical control (CNC) lathe and utilized to validate the feasibility of the designed insert condition classification system. The results of the cutting tests showed that the designed system could perform insert condition classification under different machining conditions, with a classification rate exceeding 80%. Using a triaxial accelerometer, the designed insert condition classification system could perform identification and classification online for four common insert conditions under different machining conditions, ensuring that CNC lathes could further improve manufacturing quality and efficiency in practice.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3