Measurement and Spatial Econometric Analysis of Forest Carbon Sequestration Efficiency in Zhejiang Province, China

Author:

Zhu Chenghao,Wang Zhengyi,Ji Biyong,Wang Jianwu,Xu Chang,Xie Binglou

Abstract

Maximizing the carbon sequestration of forested land is important for achieving carbon neutrality. Although some studies have discussed forest carbon sequestration efficiency (FCSE) from the perspective of total factor production, it is being increasingly recognized that forestland use regulates sequestration and emissions. When viewing forestland use as input and carbon emissions as output, there is a lack of empirical evidence on FCSE and its influencing factors. Here, a superefficiency slacks-based measurement model was applied to estimate FCSE for 66 counties in Zhejiang Province, China. The influencing factors and spatial spillover effects of FCSE were also analyzed using a spatial autocorrelation model. The findings showed that over the sample observation period, county FCSE ranged from 0.199 to 1.258, with considerable gaps. The global Moran’s I index showed that county-level FCSE was markedly spatially autocorrelated. Spatially, forestland use, cutting, pests, and diseases had negative spatial spillover effects on FCSE, whereas average annual temperature and precipitation displayed positive spillover effects. These findings suggest that the overall coordination of forest resource supervision and management among counties should be strengthened. The implementation of forestry management models aimed at consolidating or increasing forest carbon sequestration should be emphasized to improve forest quality, thereby promoting FCSE enhancement.

Funder

Province-Academy Cooperative Forestry Science and Technology Project of Zhejiang Province and Chinese Academy of Forestry

Publisher

MDPI AG

Subject

Forestry

Reference98 articles.

1. IPCC, 2021: Summary for Policymakers;Masson-Delmotte,2021

2. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of CLIMATE change, Sustainable Development, and Efforts to Eradicate Poverty,2018

3. Biomass of Tropical Forests: A New Estimate Based on Forest Volumes

4. Carbon Pools and Flux of Global Forest Ecosystems

5. Conventions of climate change: constructions of danger and the dispossession of the atmosphere

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3