A Functionalised Carbon Fiber for Flexible Extraction and Determination of Hg(II) Using Au(NP)-Thiol-CF Inductively Coupled Plasma Mass Spectrometry

Author:

Bin Ateeq Mashael K.,Bin Durayhim Nouf M.,Sulayem Meral M.ORCID,Al-Qahtani Waad A.,Khdary Nezar H.ORCID,Alhassan Ahmed M.,Alzahrani Fatimah Mohammed A.ORCID,Katubi Khadijah Mohammedsaleh M.ORCID,Alsaiari Norah SalemORCID

Abstract

This work illustrates the improvement in ultra-trace Hg(II) determination in water based on a novel flexible extraction and preconcentration technique (FEPT). This method focuses on the covalent functionalisation of carbon fibre (CF) based on (3-mercaptopropyl)trimethoxysilane. The functionalisation of CF is carried out in two steps: functionalising the surface of CF using acid treatment to obtain hydroxy and carboxyl groups on the surface, followed by a condensation reaction between the carboxyl or hydroxy groups on the carbon (CF-OH) and (3-mercaptopropyl)trimethoxysilane to form mercapto-CF (CF-SH). FTIR, EDX, SEM, XRD and UV-Vis were utilised to confirm the modification. ICP-MS is utilised to determine the Hg(II) and to assess the influence of the memory effect on the results using Au3+ solution and suspended Au nanoparticles (Au-NPs). The result shows that the Au-NPs improve Hg(II) detection and eliminate the memory effect. This study also includes appropriate parameters for contact time, eluent solution, pH, and the foreign metal and ions preconcentration factor. As a result, thiol-CF shows high Hg(II) uptake, flexibility, and stability during the analysis process, with a recovery of 98.96% ± 0.41% for 10 preconcentration factors. These features make FEPT a valuable method for extracting pollutants and overcoming the problems associated with the analysis of such samples.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3