Step Length Estimation Using the RSSI Method in Walking and Jogging Scenarios

Author:

Yang ZanruORCID,Tran Le ChungORCID,Safaei FarzadORCID

Abstract

In this paper, human step length was estimated based on wireless channel properties and the received signal strength indicator (RSSI) method. Path loss between two ankles of the person under test was converted from the RSSI, which was measured using our developed wearable transceivers with embedded micro-controllers in four scenarios, namely indoor walking, outdoor walking, indoor jogging, and outdoor jogging. For brevity, we call it on-ankle path loss. The histogram of the on-ankle path loss showed clearly that there were two humps, where the second hump was closely related to the maximum path loss, which, in turn, corresponded to the step length. This histogram can be well approximated by a two-term Gaussian fitting curve model. Based on the histogram of the experimental data and the two-term Gaussian fitting curve, we propose a novel filtering technique to filter out the path loss outliers, which helps set up the upper and lower thresholds of the path loss values used for the step length estimation. In particular, the upper threshold was found to be on the right side of the second Gaussian hump, and its value was a function of the mean value and the standard deviation of the second Gaussian hump. Meanwhile, the lower threshold lied on the left side of the second hump and was determined at the point where the survival rate of the measured data fell to 0.68, i.e., the cumulative distribution function (CDF) approached 0.32. The experimental data showed that the proposed filtering technique resulted in high accuracy in step length estimation with errors of only 10.15 mm for the indoor walking, 4.40 mm for the indoor jogging, 4.81 mm for the outdoor walking, and 10.84 mm for the outdoor jogging scenarios, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3