Research on Predicting Welding Deformation in Automated Laser Welding Processes with an Enhanced DEWOA-BP Algorithm

Author:

Zhang Xuejian12,Hu Xiaobing12,Li Hang12,Zhang Zheyuan12,Chen Haijun12,Sun Hong3

Affiliation:

1. School of Mechanical Engineering, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu 610065, China

2. Institute of Industrial Technology, Sichuan University, Section 1, Changjiang North Road, Yibin 644005, China

3. Yibin Mechatronics Research Institute, Section 3, Changjiang North Road, Yibin 644005, China

Abstract

Welding stands as a critical focus for the intelligent and digital transformation of the machinery industry, with automated laser welding playing a pivotal role in the sector’s technological advancement. The management of welding deformation in such operations is fundamental, relying on advanced analysis and prediction methods. The endeavor to accurately analyze welding deformation in practical applications is compounded by the interplay of numerous variables, a pronounced coupling effect among these factors, and a reliance on expert intuition. Thus, effective deformation control in automated laser welding operations necessitates the gathering of pre-test laser welding data to develop a predictive approach that accurately reflects real-world conditions and is characterized by improved reliability and stability. To address the technological evolution in automated laser welding, a predictive model based on neural network technology is proposed to map the intricate relationship between process variables and the resulting deformation. At the heart of this approach is the formulation of a predictive model utilizing a back-propagation neural network (BP), with an emphasis on four essential welding parameters: speed, peak power, duty cycle, and defocusing amount. The model’s predictive accuracy is then honed through the application of the whale optimization algorithm (WOA) and the differential evolutionary (DE) algorithm. Finally, extensive testing in an automated laser welding experimental setup is conducted to validate the accuracy and reliability of the proposed prediction model. It is demonstrated through these experiments that the deformation prediction model, enhanced by the DEWOA-BP neural network, accurately forecasts the relationship between laser welding parameters and the induced deformation, maintaining a prediction error margin of ±0.1mm. The model is employed to fulfill the requirements for a pre-welding quality evaluation, thereby facilitating a more calculated and informed approach to welding operations. This method of intelligent prediction is not only crucial for the intelligent transformation of laser welding but also holds significant implications for traditional machining technologies such as milling, grinding, and spraying. It offers innovative ideas and methods that are pivotal for the industrial revolution and technological advancement of the traditional machining industry.

Funder

Key R&D project of the Sichuan Provincial Science and Technology Plan Project

Sichuan University-Yibin School—City Strategic Cooperation Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3