An Efficient Zero-Knowledge Dual Membership Proof Supporting Pos-and-Neg Membership Decision

Author:

Yin HongjianORCID,Chen E,Zhu YanORCID,Feng Rongquan,Yau Stephen S.

Abstract

In this paper, we address the problem of secure decision of membership. We present a Zero-Knowledge Dual Membership Proof (ZKDMP) protocol, which can support positive and negative (Pos-and-Neg) membership decisions simultaneously. To do it, two secure aggregation functions are used to compact an arbitrarily-sized subset into an element in a cryptographic space. By using these aggregation functions, a subset can achieve a secure representation, and the representation size of the subsets is reduced to the theoretical lower limit. Moreover, the zeros-based and poles-based secure representation of the subset are used to decide Pos-and-Neg membership, respectively. We further verify the feasibility of combining these two secure representations of the subset, so this result is used to construct our dual membership decision cryptosystem. Specifically, our ZKDMP protocol is proposed for dual membership decisions, which can realize a cryptographic proof of strict Pos-and-Neg membership simultaneously. Furthermore, the zero-knowledge property of our construction ensures that the information of the tested element will not be leaked during the implementation of the protocol. In addition, we provide detailed security proof of our ZKDMP protocol, including positive completeness, negative completeness, soundness and zero-knowledge.

Funder

National Key Technologies Research and Development Programs of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Improved Efficiency and Forward Security of 0-RTT Key Exchange for SDP;2024 33rd International Conference on Computer Communications and Networks (ICCCN);2024-07-29

2. Distributed State Fusion Estimation of Multi-Source Localization Nonlinear Systems;Sensors;2023-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3