Author:
Qin Yongrui,Zhao Meng,Lin Qingcheng,Li Xuefeng,Ji Jing
Abstract
Prediction of building energy consumption using mathematical modeling is crucial for improving the efficiency of building energy utilization, assisting in building energy consumption planning and scheduling, and further achieving the goal of energy conservation and emission reduction. In consideration of the non-linear and non-smooth characteristics of building energy consumption time series data, a short-term, hybrid building energy consumption prediction model combining variational mode decomposition (VMD), a simulated annealing (SA) algorithm, and a deep belief network (DBN) is proposed in this study. In the proposed VMD-SA-DBN model, the VMD algorithm decomposes the time series into different modes to reduce the fluctuation of the data. The SA-DBN prediction model is built for each mode separately, and the DBN network structure parameters are optimized by the SA algorithm. The prediction results of each model are aggregated and reconstructed to obtain the final prediction output. The validity and prediction performance of the proposed model is evaluated on a publicly available dataset, and the results show that the proposed new model significantly improves the accuracy and stability of building energy consumption prediction compared with several typical machine learning methods. The mean absolute percent error (MAPE) of the VMD-SA-DBN model is 63.7%, 65.5%, 46.83%, 64.82%, 44.1%, 36.3%, and 28.3% lower than that of the long short-term memory (LSTM), gated recurrent unit (GRU), VMD-LSTM, VMD-GRU, DBN, SA-DBN, and VMD-DBN models, respectively. The results will help managers formulate more-favorable low-energy emission reduction plans and improve building energy efficiency.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献