A Numerical Algorithm for Self-Learning Model Predictive Control in Servo Systems

Author:

Yang Hengzhan,Xi Dian,Weng Xu,Qian Fucai,Tan Bo

Abstract

Model predictive control (MPC) is one of the most effective methods of dealing with constrained control problems. Nevertheless, the uncertainty of the control system poses many problems in its performance optimization. For high-precision servo systems, friction is typically the main factor in uncertainty affecting the accuracy of the system. Our work focuses on stochastic systems with unknown parameters and proposes a model predictive control strategy with machine learning characteristics that utilizes pre-estimated information to reduce uncertainty. Within this model, the parameters are obtained using the estimator. The uncertainty caused by the parameter estimation error in the system is parameterized, serving as a learning control component to reduce future uncertainty. Then, the estimated parameters and the current state of the system are used to predict the future p-step state. The control sequence is calculated under the MPC’s rolling optimization mechanism. After the system output is obtained, the new parameter value at the next moment is re-estimated. Finally, MPC is carried out to realize the dual rolling optimization mechanism. In general, the proposed strategy optimizes the control objective while reducing the system uncertainty of the future parameter and achieving better system performance. Simulation results demonstrate the effectiveness of the algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Position Control of Servo Motor on a Practical Model;2023 Asia Meeting on Environment and Electrical Engineering (EEE-AM);2023-11-13

2. Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters;Mathematics;2023-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3